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Abstract

We examined if plasma phosphorylated tau is associated with neurodegenera-

tion in Alzheimer’s disease. We investigated 372 cognitively unimpaired partici-

pants, 554 mild cognitive impairment patients, and 141 Alzheimer’s disease

dementia patients. Tau phosphorylated at threonine 181, regional cortical thick-

ness (using magnetic resonance imaging) and hypometabolism (using fluo-

rodeoxyglucose positron emission tomography) were measured longitudinally.

High plasma tau was associated with hypometabolism and cortical atrophy at

baseline and over time, and longitudinally increased tau was associated with

accelerated atrophy, but these associations were only observed in Ab-positive
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participants. Plasma phosphorylated tau may identify and track processes linked

to neurodegeneration in Alzheimer’s disease.

Introduction

Plasma P-tau181 is increased in Alzheimer’s disease (AD),

and correlates with brain deposition of aggregated b-amy-

loid (Ab) and tau, the core AD hallmarks.1–3 Plasma P-

tau181 may potentially be used as a noninvasive proxy for

tau pathology linked to neurodegeneration,2,4 but longitu-

dinal plasma P-tau181 data have not been examined. To

better understand the performance of plasma P-tau181 to

monitor tau pathology and subsequent neurodegeneration

in AD, we need truly longitudinal analyses that incorpo-

rate change of both neuroimaging measures and P-tau181.

We tested associations between longitudinal plasma P-

tau181 and imaging measures for hypometabolism, using

fluorodeoxyglucose positron emission tomography (FDG-

PET) and for cortical atrophy, using magnetic resonance

imaging (MRI), in a large cohort of cognitively unim-

paired (CU) individuals, patients with mild cognitive

impairment (MCI) and AD dementia patients. We tested

the hypothesis that increased plasma P-tau181 was associ-

ated with signs of neurodegeneration, both at baseline and

over time. Since plasma P-tau181 is strongly linked to

AD,1–3 we further hypothesized that these associations

would only be seen in individuals who were on the AD

trajectory (as indicated by a positive Ab PET scan).

Methods

Study participants

Data were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu).

The ADNI was launched in 2003 as a public-private part-

nership, led by Principal Investigator Michael W. Weiner,

MD. For up-to-date information, see www.adni-info.org.

We used data accessed at the ADNI database on 2020/06/

25. We included all CU controls, MCI and AD dementia

patients with plasma P-tau181 and at least one available

MRI or FDG-PET scan. Inclusion and exclusion criteria

have been described before.5 In sum, CU participants had

Mini Mental State Examination (MMSE) score ≥ 24, and

Clinical Dementia Rating (CDR) score 0. MCI partici-

pants had MMSE score ≥ 24, objective memory loss

tested by delayed recall of the Wechsler Memory Scale

Logical Memory II, CDR 0.5, preserved activities of daily

living, and absence of dementia. AD dementia patients

fulfilled the National Institute of Neurological and

Communicative Disorders and Stroke and the Alzheimer’s

Disease and Related Disorders Association (NINCDS-

ADRDA) criteria for probable AD,6 had MMSE 20–26
and CDR 0.5-1.0. The study data and samples were col-

lected from 2005/10/24 to 2019/07/17. Ethical approval

was given by the local ethical committees of all involved

sites. All participants gave written informed consent.

Biomarker and imaging measurements

Plasma samples were taken annually. P-tau181 was ana-

lyzed on a Single molecule array (Simoa) HD-X Analyzer

(Quanterix, Billerica, MA), using an in-house assay devel-

oped in the Clinical Neurochemistry Laboratory, Univer-

sity of Gothenburg, Sweden.2 In the P-tau181 data file

(UGOTPTAU181_06_18_20.csv at the ADNI database),

we noted 33 outlying data points (P-tau181-concentra-

tions more than three standard deviations above the

mean, 63.3 ng/L) out of N = 3758 observations. We

excluded those outliers from all analyses.

Structural brain images were acquired using 3 Tesla

MRI scanners with T1-weighted MRI scans using a sagit-

tal volumetric magnetization prepared rapid gradient echo

(MP-RAGE) sequence. MRI scans were done at baseline,

3 months and 6 months, and thereafter annually. Free-

Surfer (v5.1) was used for quantification of regional

thickness and volumes according to the 2010 Desikan-Kil-

lany atlas.7 We used cortical thickness for a meta-region

of interest (“temporal composite”) involving entorhinal,

inferior temporal, middle temporal, and fusiform cortex.8

FDG-PET scans were acquired annually. An FDG com-

posite score was calculated as the average uptake in left

and right angular, temporal, and posterior cingulate

regions.9 18F-Florbetapir PET brain scans for Ab deposi-

tion were acquired at baseline according to a previously

described protocol,9 using a cortical summary-ROI con-

sisting of frontal, anterior/posterior cingulate, lateral pari-

etal, lateral temporal brain regions and with whole

cerebellum as reference. Ab positivity was defined as 18F-

florbetapir PET > 1.11 SUVR.9

Statistical analyses

We determined associations between continuous plasma P-

tau181 and neuroimaging measures, using all available

paired longitudinal data, in linear mixed-effects (LME)

models with P-tau181 as predictor and neuroimaging
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measures as response. We next tested if baseline plasma P-

tau181 predicted change in neuroimaging measures. To use

all available data for the imaging measures, we extracted

slopes of change for temporal cortical thickness and FDG-

PET in separate linear regression models (without requiring

paired P-tau181 data). We then used neuroimaging slopes as

response variables in linear regression models with continu-

ous P-tau181 as the predictor. We also tested if longitudinal

change in P-tau181 correlated with longitudinal change in

neuroimaging measures. For this, we extracted slopes for P-

tau181 in separate linear regression models (without requir-

ing paired imaging data). We used those slopes as predictors

in linear regression models with a change in neuroimaging

measures as outcomes. All these models were adjusted for

age, sex, diagnostic group, APOE e4 status (positive = at

least one e4 allele, or negative = no e4 alleles), Ab status,

and the interaction between Ab status and P-tau181, and

(for slope data) lag between first imaging scan and first P-

tau181 sampling. For the final analyses, we used binary P-

tau181 status. We defined a P-tau181 cut-point using two-

component mixture modeling of the P-tau181 data in Ab-
negative CU, at the mean concentration plus two standard

deviations of the lower component. We divided the data in

four groups by combinations of positivity and negativity on

P-tau181 and Ab PET. We used this factor as the predictor

of baseline and longitudinal neuroimaging measures in lin-

ear regression models, adjusted for age, sex, diagnostic

group, and (for tests of slopes) lag between the first imaging

scan and first P-tau181 measure. We also performed sensi-

tivity analyses within diagnostic subgroups and in a

restricted dataset with paired MRI and FDG-PET imaging

data. All statistical analyses were done in R (v 4.0.0). Signifi-

cance was determined at P < 0.05.

Results

Demographics are shown in Table 1.

Continuous plasma P-tau181 and temporal
cortical thickness

Higher plasma P-tau181 was associated with thinner cor-

tices in Ab+, but not in Ab- individuals (Fig. 1A; in sub-

group analyses, this was found in MCI and AD, but not

in CU, Figs. S1–S3). Higher baseline plasma P-tau181 was

also associated with more rapid decline of cortical thick-

ness in Ab+, but not in Ab- individuals (Fig. 1B; in sub-

group analyses, this was found in MCI, but not in CU or

AD, Figs. S1–S3). Greater slopes of plasma P-tau181 were

associated with more rapid decline of cortical thickness in

Ab+ individuals, but not in Ab- individuals (Fig. 1C; in

subgroup analyses, this was found in CU and AD, but

not in MCI, Figs. S1–S3).

Continuous plasma P-tau181 and
hypometabolism

Higher plasma P-tau181 was associated with lower FDG-

PET SUVR in Ab+, but not in Ab- individuals (Fig. 1D;

in subgroup analyses, this was found in MCI, but not in

CU or AD, Figs. S1–S3). Higher baseline plasma P-tau181

was also associated with more rapid decline of FDG-PET

SUVR in Ab+, but not in Ab- individuals (Fig. 1E; in

subgroup analyses, this was found in CU, but not in MCI

or AD, Figs. S1–S3). Slopes of plasma P-tau181 were not

associated with slopes of FDG-PET SUVR in either Ab-
or Ab+ (Fig. 1F).

Dichotomous plasma P-tau181 and
neurodegeneration

A cut-point for abnormal baseline plasma P-tau181 was

defined in the Ab-negative CU group (P-

tau181 > 19.8 ng/L). The data were divided into four

Table 1. Demographics.

CU MCI

AD

dementia

N 372 554 141

Sex (M/F) 196/176 241/313 59/82

Age (y) 73.6

(5.8)

71.9

(7.4)

74.4 (8.2)

Education (y) 16.6

(2.6)

16.1

(2.7)

15.7 (2.7)

APOE e4 (��/� +/++) 267/98/

7

290/

209/55

46/66/29

Baeline Ab-status (�/+) 245/127 243/311 16/125

Baseline P-tau181 (ng/L) 15.2

(8.6)

18.4

(10.5)

22.8 (8.5)

Baseline temporal cortical

thickness (mm)

2.82

(0.15)

2.76

(0.19)

2.53 (0.22)

Baseline FDG-PET (SUVR) 1.31

(0.11)

1.25

(0.14)

1.07 (0.15)

Nr of P-tau181 measures

(median [IQR])

3 (2–4) 4 (3–5) 2 (1–2)

Duration from first to last P-

tau181 measure (y) (median

[IQR])

2.05

(1.98–

3.97)

3.01

(2.00–

3.99)

0.99 (0.00

–1.05)

Nr of MRI scans (median [IQR]) 5 (4–6) 5 (4–6) 4 (4–4)

Duration from first to last MRI

scan (y) (median [IQR])

2.07

(1.98–

4.00)

2.12

(1.98–

4.00)

1.02 (0.98

–1.95)

Nr of FDG-PET scans (median

[IQR])

2 (1–2) 2 (1–2) 1 (1–1)

Duration from first to last FDG-

PET (y) (median [IQR])

1.95

(0.00–

2.03)

1.99

(0.00–

3.97)

0.00 (0.00

–0.00)

Continuous data are mean (standard deviation).
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parts based on P-tau181 and Ab status (Fig. 2A). P-

tau181+/Ab+ (N = 302) had thinner baseline cortices (in

subgroup analyses, this was found in MCI and AD, but

not in CU, Figs. S4–S6), lower baseline FDG-PET SUVR

(in subgroup analyses this was found in CU and MCI,

but not in AD, Figs. S4–S6), and more rapid decline in

cortical thickness (but not in subgroup analyses, Figs. S4–
S6) and FDG-PET SUVR (in subgroup analyses, this was

found in MCI, but not in CU or AD, Figs. S4–S6) than

P-tau181�/Ab+ (N = 261). There were no differences

between Ptau181-/Ab- (N = 425) and P-tau181+/Ab-
(N = 79) for any comparison.

Sensitivity analyses with paired imaging
data

In the main analyses, we included all available MRI and

FDG-PET data, as measures of neurodegeneration.

Although we did not aim to compare effects on MRI with

effects on FDG-PET, we also did a sensitivity analysis
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Figure 1. Plasma P-tau181 and imaging measures of neurodegeneration. Associations between temporal cortical thickness (panels A–C) and

fluorodeoxyglucose PET (panels D–F) with plasma P-tau181 levels, testing associations with all available paired data (panels A and D), associations

between slopes of imaging measures and baseline P-tau181 (panels B and E), and associations between slopes of imaging measures and slopes of

P-tau181 (panels C and F). All models are adjusted for age, sex, diagnostic group, and Ab status. Slope models are also adjusted for lag between

the first imaging scan and first P-tau181 measure. The effects in Ab-negative subjects are shown in green and effects in Ab-positive subjects are

shown in blue (for individual subjects and average effect). Panels A and D show results from linear mixed-effects models, with several data points

per individual (individual subjects as a random factor). P-values are extracted from the models for associations in Ab-negative and Ab-positive

subjects separately. P-values are also indicated for the difference in slopes between Ab-positive and Ab-negative subjects.

Figure 2. Fluorodeoxyglucose PET and temporal cortical thickness by groups av P-tau181 and Ab-PET positivity. Panel A shows the overall P-

tau181 and Ab PET data, cut-points for P-tau181 (>19.8 ng/L) and Ab PET (>1.11 SUVR) positivity, and the four groups created by combinations

of P-tau181 and Ab PET. Panels B–E show differences between groups for temporal cortical thickness and FDG-PET, at baseline and over time.

The groups were compared in linear regression models, adjusted for age, sex, diagnostic group, and lag between the first imaging scan and first

P-tau181 measure. P-values are extracted for comparisons between P-tau181�/Ab- (reference) and all other groups, and between P-tau181-

negative and -positive groups within the Ab groups.
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restricted to paired imaging data (from ADNI visits when

both MRI and FDG-PET data were available). This

resulted in a smaller dataset, with 206 CU, 376 MCI, and

88 AD dementia patients. Most findings remained signifi-

cant or borderline significant in this restricted data set

(Figs. S7 and S8). In sum, higher plasma P-tau181

remained associated with thinner cortices, more rapid

decline of cortical thickness and lower FDG-PET SUVR

in Ab+ (but not in Ab-) individuals. Greater slopes of

plasma P-tau181 remained associated with more rapid

decline of cortical thickness in Ab+ individuals. P-

tau181+/Ab+ had thinner baseline cortices and lower

baseline FDG-PET SUVR than P-tau181�/Ab+, but the

associations with decline in cortical thickness and FDG-

PET SUVR were no longer significant in this subset.

Discussion

Higher plasma P-tau181 was associated with reduced

brain glucose metabolism, reduced temporal lobe cortical

thickness, and more rapid acceleration of hypometabolism

and cortical atrophy, indicating worsening of neurodegen-

eration, but only in those with evidence of AD-type

pathophysiology in the form of a positive Ab PET scan.

Longitudinal increases of plasma P-tau181 correlated with

longitudinal cortical atrophy in Ab PET-positive individu-

als. Taken together, this suggests that plasma P-tau181

reflects downstream longitudinal neurodegeneration due

to AD, linked to either accumulation of paired-helical fil-

ament (PHF) positive neurites surrounding amyloid pla-

ques or to intracellular tangles.

Several studies have found correlations between CSF P-

tau181 and neurodegeneration, although comparisons

involving longitudinal CSF data are rare.10–12 Previous

studies have also suggested correlations between plasma

P-tau181 and atrophy, using MRI.2,4 Mielke et al. showed

that higher plasma P-tau181 was associated cross section-

ally with less cortical thickness in a group of 269 CU

individuals, MCI and AD dementia patients, but there

were no associations in the individual diagnostic groups.4

Karikari et al. showed that plasma P-tau181 was associ-

ated with cross-sectional and 1-year longitudinal gray

matter atrophy in 88 individuals, including CU, MCI,

and AD dementia patients, but again there were no asso-

ciations within individual diagnostic groups.2 Our study

is, to our knowledge, the first truly longitudinal study on

the topic (using longitudinal data for both imaging mea-

sures and plasma P-tau181). We also found associations

when adjusting for clinical diagnosis, which may other-

wise confound the relationship between atrophy and bio-

chemical measures.

The longitudinal link between plasma P-tau181 and

signs of atrophy in people with (but not without)

biomarker signs of Ab pathology, suggests that plasma P-

tau181 may be useful as a noninvasive marker to track

neurodegeneration in AD. Plasma P-tau181 also performs

well as a diagnostic marker for AD.1,2,4 Together, this

suggests that measurement of plasma P-tau181 concentra-

tion may be useful in clinical trials (and perhaps in clini-

cal practice) as a noninvasive, affordable way to monitor

disease progression. As in previous studies,1–3 we note

high P-tau181 levels despite a normal Ab PET scan in a

minority of subjects. Since these subjects do not show

signs of increased neurodegeneration, this may not indi-

cate a malign condition.

One limitation was that only one cohort was used.

ADNI is tailored to represent a clinical trial population,

and further studies are needed on more general and

diverse populations, where neurodegeneration is more

likely to also be impacted by other (non-AD) processes.

The study cohort did, however, include Ab-negative MCI

and (clinically diagnosed) AD dementia subjects, which

are likely to have cognitive impairment due to non-AD

conditions, including depression and cerebrovascular dis-

ease.13,14 We only included subjects with Ab data, so that

we could stratify the analyses by Ab-status, but we did

not perform complete ATN classification,15 since mea-

sures of neurodegeneration were key outcome data, and

since we did not have an independent measure of T-sta-

tus (tau PET data were lacking in most subjects, and CSF

P-tau181 data were not suitable for this analysis, since it

is very closely correlated with plasma P-tau181, the main

predictor in this study1,3).
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